Square Roots and Simplifying Radicals

A radical expression is an expression that contains a square root. The expression is in simplest form when the following three conditions have been met.

- No radicands have perfect square factors other than 1.
- No radicands contain fractions.
- No radicals appear in the denominator of a fraction.

The Product Property states that for two numbers a and $b \geq 0, \sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$.

EXAMPLE

1 Simplify.

a. $\sqrt{45}$

$$
\begin{aligned}
\sqrt{45} & =\sqrt{3 \cdot 3 \cdot 5} & & \text { Prime factorization of } 45 \\
& =\sqrt{3^{2}} \cdot \sqrt{5} & & \text { Product Property of Square Roots } \\
& =3 \sqrt{5} & & \text { Simplify. }
\end{aligned}
$$

b. $\sqrt{6} \cdot \sqrt{15}$

$$
\begin{aligned}
\sqrt{6} \cdot \sqrt{15} & =\sqrt{6 \cdot 15} & & \text { Product Property } \\
& =\sqrt{3 \cdot 2 \cdot 3 \cdot 5} & & \text { Prime factorization } \\
& =\sqrt{3^{2}} \cdot \sqrt{10} & & \text { Product Property } \\
& =3 \sqrt{10} & & \text { Simplify. }
\end{aligned}
$$

For radical expressions in which the exponent of the variable inside the radical is even and the resulting simplified exponent is odd, you must use absolute value to ensure nonnegative results.

EXAMPLE

(2) $\sqrt{20 x^{3} y^{5} z^{6}}$

$$
\begin{aligned}
\sqrt{20 x^{3} y^{5} z^{6}} & =\sqrt{2^{2} \cdot 5 \cdot x^{3} \cdot y^{5} \cdot z^{6}} & & \text { Prime factorization } \\
& =\sqrt{2^{2}} \cdot \sqrt{5} \cdot \sqrt{x^{3}} \cdot \sqrt{y^{5}} \cdot \sqrt{z^{6}} & & \text { Product Property } \\
& =2 \cdot \sqrt{5} \cdot x \cdot \sqrt{x} \cdot y^{2} \cdot \sqrt{y} \cdot\left|z^{3}\right| & & \text { Simplify. } \\
& =2 x y^{2}\left|z^{3}\right| \sqrt{5 x y} & & \text { Simplify. }
\end{aligned}
$$

The Quotient Property states that for any numbers a and b, where $a \geq 0$ and

$$
b \geq 0, \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} .
$$

EXAMPLE

(3) Simplify $\sqrt{\frac{25}{16}}$.

$$
\begin{aligned}
\sqrt{\frac{25}{16}} & =\frac{\sqrt{25}}{\sqrt{16}} & & \text { Quotient Property } \\
& =\frac{5}{4} & & \text { Simplify. }
\end{aligned}
$$

Rationalizing the denominator of a radical expression is a method used to eliminate radicals from the denominator of a fraction. To rationalize the denominator, multiply the expression by a fraction equivalent to 1 such that the resulting denominator is a perfect square.

EXAMPLE

4 Simplify.

a. $\frac{2}{\sqrt{3}}$

$$
\begin{aligned}
\frac{2}{\sqrt{3}} & =\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} & & \text { Multiply by } \frac{\sqrt{3}}{\sqrt{3}} . \\
& =\frac{2 \sqrt{3}}{3} & & \text { Simplify. }
\end{aligned}
$$

b. $\frac{\sqrt{13 y}}{\sqrt{18}}$

$$
\begin{aligned}
\frac{\sqrt{13 y}}{\sqrt{18}} & =\frac{\sqrt{13 y}}{\sqrt{2 \cdot 3 \cdot 3}} & & \text { Prime factorization } \\
& =\frac{\sqrt{13 y}}{3 \sqrt{2}} & & \text { Product Property } \\
& =\frac{\sqrt{13 y}}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} & & \text { Multiply by } \frac{\sqrt{2}}{\sqrt{2}} . \\
& =\frac{\sqrt{26 y}}{6} & & \text { Product Property }
\end{aligned}
$$

Sometimes, conjugates are used to simplify radical expressions. Conjugates are binomials of the form $p \sqrt{q}+r \sqrt{s}$ and $p \sqrt{q}-r \sqrt{s}$.

EXAMPLE

(5) Simplify $\frac{3}{5-\sqrt{2}}$.

$$
\begin{aligned}
\frac{3}{5-\sqrt{2}} & =\frac{3}{5-\sqrt{2}} \cdot \frac{5+\sqrt{2}}{5+\sqrt{2}} & & \frac{5+\sqrt{2}}{5+\sqrt{2}}=1 \\
& =\frac{3(5+\sqrt{2})}{5^{2}-(\sqrt{2})^{2}} & & (a-b)(a+b)=a^{2}-b^{2} \\
& =\frac{15+3 \sqrt{2}}{25-2} & & \text { Multiply. }(\sqrt{2})^{2}=2 \\
& =\frac{15+3 \sqrt{2}}{23} & & \text { Simplify. }
\end{aligned}
$$

