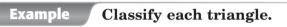
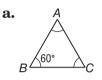
4-1 Study Guide and Intervention

Classifying Triangles

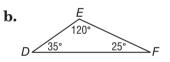
Classify Triangles by Angles One way to classify a triangle is by the measures of its angles.

- If all three of the angles of a triangle are acute angles, then the triangle is an **acute triangle**.
- If all three angles of an acute triangle are congruent, then the triangle is an equiangular triangle.
- If one of the angles of a triangle is an obtuse angle, then the triangle is an obtuse triangle.
- If one of the angles of a triangle is a right angle, then the triangle is a **right triangle**.

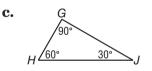




All three angles are congruent, so all three angles have measure 60°. The triangle is an equiangular triangle.



The triangle has one angle that is obtuse. It is an obtuse triangle.

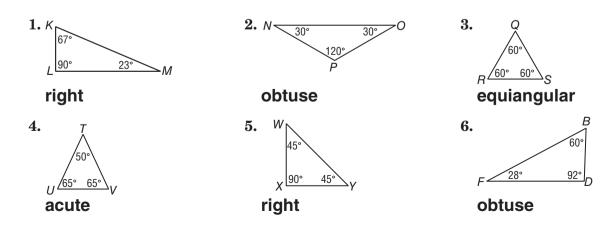


The triangle has one right angle. It is a right triangle.

Exercises

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Classify each triangle as acute, equiangular, obtuse, or right.

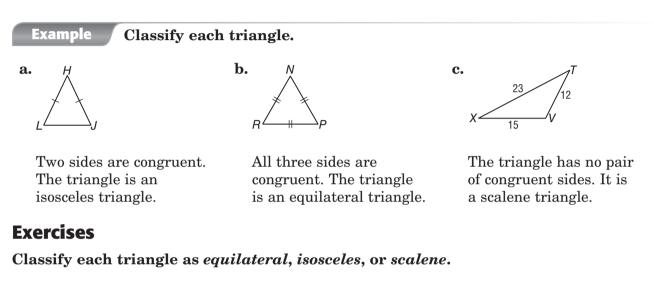


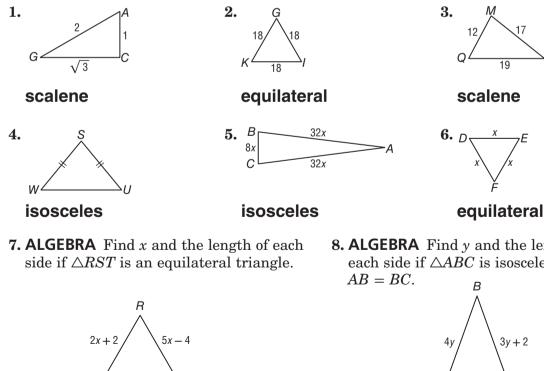
Study Guide and Intervention (continued) **4**-1

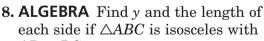
Classifying Triangles

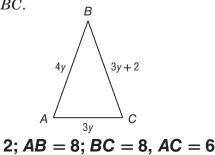
Classify Triangles by Sides You can classify a triangle by the number of congruent sides. Equal numbers of hash marks indicate congruent sides.

- If all three sides of a triangle are congruent, then the triangle is an equilateral triangle.
- If at least two sides of a triangle are congruent, then the triangle is an **isosceles triangle**. ٠ Equilateral triangles can also be considered isosceles.
- If no two sides of a triangle are congruent, then the triangle is a scalene triangle.









Chapter 4

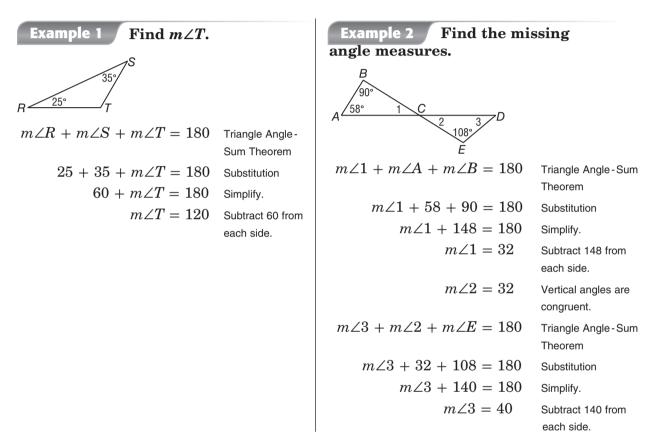
NAME _

Study Guide and Intervention 4-2

Angles of Triangles

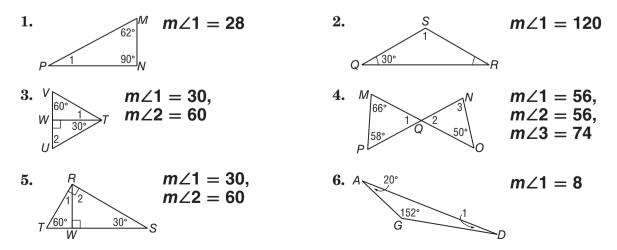
Triangle Angle-Sum Theorem If the measures of two angles of a triangle are known, the measure of the third angle can always be found.

Triangle Angle Sum Theorem	The sum of the measures of the angles of a triangle is 180. In the figure at the right, $m \angle A + m \angle B + m \angle C = 180$.	В
		ACC



Exercises

Find the measure of each numbered angle.



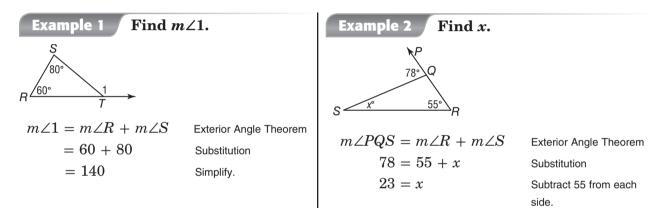
Lesson 4-2

Study Guide and Intervention (continued) 4-2

Angles of Triangles

Exterior Angle Theorem At each vertex of a triangle, the angle formed by one side and an extension of the other side is called an exterior angle of the triangle. For each exterior angle of a triangle, the **remote interior angles** are the interior angles that are not adjacent to that exterior angle. In the diagram below, $\angle B$ and $\angle A$ are the remote interior angles for exterior $\angle DCB$.

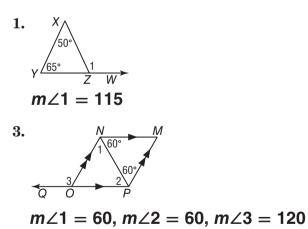
Exterior Angle Theorem	The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles. $m\angle 1 = m\angle A + m\angle B$	Ď	
---------------------------	--	---	--

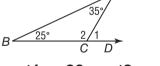


2.

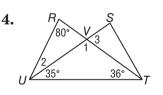
Exercises

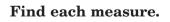
Find the measures of each numbered angle.

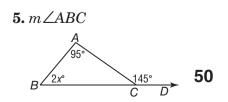


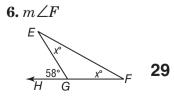


 $m \angle 1 = 60, m \angle 2 = 120$









Chapter 4

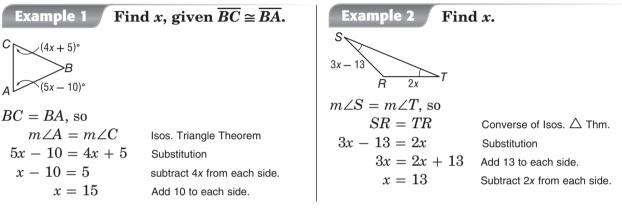
NAME

Study Guide and Intervention 4-6

Isosceles and Equilateral Triangles

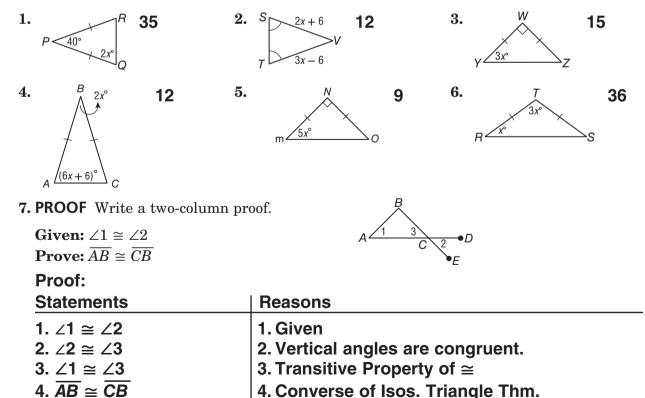
Properties of Isosceles Triangles An **isosceles triangle** has two congruent sides called the *legs*. The angle formed by the legs is called the **vertex angle**. The other two angles are called **base angles**. You can prove a theorem and its converse about isosceles triangles.

- If two sides of a triangle are congruent, then the angles opposite those sides are congruent. (Isosceles Triangle Theorem)
- If two angles of a triangle are congruent, then the sides opposite If $\overline{AB} \cong \overline{CB}$, then $\angle A \cong \angle C$. those angles are congruent. (Converse of Isosceles Triangle If $\angle A \cong \angle C$, then $\overline{AB} \cong \overline{CB}$. Theorem)



Exercises

ALGEBRA Find the value of each variable.



4-6 Study Guide and Intervention (continued)

Isosceles and Equilateral Triangles

Properties of Equilateral Triangles An **equilateral triangle** has three congruent sides. The Isosceles Triangle Theorem leads to two corollaries about equilateral triangles.

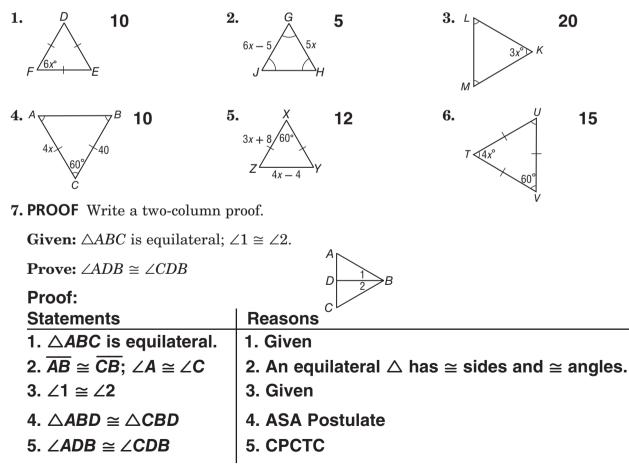
- 1. A triangle is equilateral if and only if it is equiangular.
- 2. Each angle of an equilateral triangle measures 60°.

Example Prove that if a line is parallel to one side of an equilateral triangle, then it forms another equilateral triangle.

Proof:	
Statements	Reasons $B C$
1. $\triangle ABC$ is equilateral; $\overline{PQ} \parallel \overline{BC}$.	1. Given
2. $m \angle A = m \angle B = m \angle C = 60$	2. Each \angle of an equilateral \triangle measures 60°.
3. $\angle 1 \cong \angle B, \angle 2 \cong \angle C$	3. If \parallel lines, then corres. \measuredangle are \cong .
4. $m \angle 1 = 60, m \angle 2 = 60$	4. Substitution
5. $\triangle APQ$ is equilateral.	5. If a \triangle is equiangular, then it is equilateral.

Exercises

ALGEBRA Find the value of each variable.



Study Guide and Intervention 8-3

Special Right Triangles

Properties of 45°-45°-90° Triangles The sides of a 45°-45°-90° right triangle have a special relationship.

Example 1 If the leg of a 45°-45°-90°

right triangle is x units, show that the hypotenuse is $x\sqrt{2}$ units.

Using the Pythagorean Theorem with a = b = x, then

$$c^{2} = a^{2} + b^{2}$$

$$c^{2} = x^{2} + x^{2}$$

$$c^{2} = 2x^{2}$$

$$c = \sqrt{2x^{2}}$$

$$c = x\sqrt{2}$$

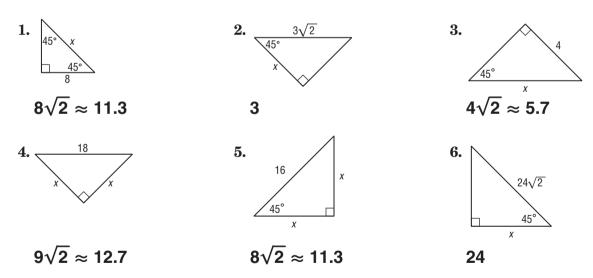
In a 45°-45°-90° right Example 2 triangle the hypotenuse is $\sqrt{2}$ times the leg. If the hypotenuse is 6 units, find the length of each leg.

The hypotenuse is $\sqrt{2}$ times the leg, so divide the length of the hypotenuse by $\sqrt{2}$. 6

$$a = \frac{6}{\sqrt{2}}$$
$$= \frac{6}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$
$$= \frac{6\sqrt{2}}{2}$$
$$= 3\sqrt{2} \text{ units}$$

Exercises

Find x.



- 7. If a 45°-45°-90° triangle has a hypotenuse length of 12, find the leg length. $6\sqrt{2} \approx 8.5$
- 8. Determine the length of the leg of 45°-45°-90° triangle with a hypotenuse length of 25 inches. $\frac{25\sqrt{2}}{2}$ in. \approx 17.7 in.
- 9. Find the length of the hypotenuse of a 45°-45°-90° triangle with a leg length of 14 centimeters. $14\sqrt{2}$ cm \approx 19.8 cm

8-3 Study Guide and Intervention (continued)

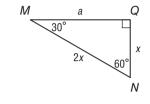
Special Right Triangles

Properties of 30°-60°-90° Triangles The sides of a 30°-60°-90° right triangle also have a special relationship.

Example 1 In a 30°-60°-90° right triangle the hypotenuse is twice the shorter leg. Show that the longer leg is $\sqrt{3}$ times the shorter leg.

 $\triangle MNQ$ is a 30°-60°-90° right triangle, and the length of the hypotenuse \overline{MN} is two times the length of the shorter side \overline{NQ} . Use the Pythagorean Theorem.

$a^2 = c^2 - b^2$
Multiply.
Subtract.
Take the positive square root of each side.
Simplify.



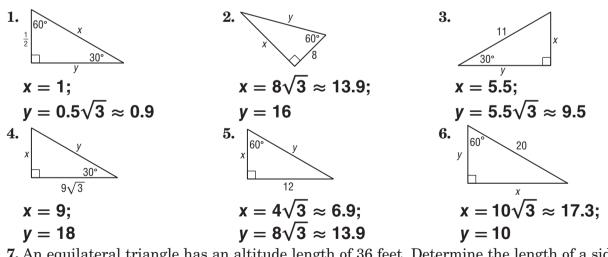
Example 2 In a 30°-60°-90° right triangle, the hypotenuse is 5 centimeters. Find the lengths of the other two sides of the triangle.

If the hypotenuse of a 30°-60°-90° right triangle is 5 centimeters, then the length of the shorter leg is one-half of 5, or 2.5 centimeters. The length of the longer leg is $\sqrt{3}$ times the length of the shorter leg, or $(2.5)(\sqrt{3})$ centimeters.

Exercises

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Find x and y.



7. An equilateral triangle has an altitude length of 36 feet. Determine the length of a side of the triangle.

$$24\sqrt{3}$$
 feet \approx 41.6 ft

8. Find the length of the side of an equilateral triangle that has an altitude length of 45 centimeters.

$$30\sqrt{3}$$
 cm \approx 52 cm