MATH

I. Model Problems.
II. Practice
III. Challenge Problems
IV. Answer Key

Web Resources

You Tubte Factoring Quadratic Equations
Different Methods for Solving Quadratic Equations
Quadratic Equation Grapher

We Recommend Meta Calculator- A Free Graphing Calculator

META
 CRLCULATOR

© www.MathWorksheetsGo.com All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Free Graph Paper : www.mathworksheetsgo.com/paper/

Solving Quadratic Equations by Factoring

I. Model Problems

In the following examples you will solve quadratic equations by factoring.
Example 1: Solve: $\boldsymbol{x}^{\mathbf{2}}-\mathbf{3 x}-\mathbf{2 0}=8$.
Write down the equation.
Rearrange so the equation is equal to zero ($a x^{2}+$

$$
\begin{equation*}
x^{2}-3 x-20=8 \tag{array}
\end{equation*}
$$

$b x+c=0$).

Factor.
Apply Zero Product Principle: if the product is zero, either one of the factors or both of the factors equal zero.
Apply additive inverse.

$$
\begin{array}{rcrc}
(x+4) & =0 & (x-7) & =0 \\
-4 & -4 & +7 & +7 \\
\hline x & =-4 & x & =7 \\
& x=-4,7 &
\end{array}
$$

The solutions are:

Example 1: Solve: $\boldsymbol{x}^{\mathbf{2}}-\mathbf{3 x}-\mathbf{2 0}=\mathbf{8}$.
Write down the equation.
Factor.
Apply Zero Product Principle: if the product is zero, either one of the factors or both of the factors equal zero.
Apply additive inverse.

$$
\begin{array}{rlrc}
(3 x+3) & =0 & (x-2) & =0 \\
-3 & -3 & +2 & +2
\end{array}
$$

Apply multiplicative inverse.
The solutions are:

Example 3: Solve: $\mathbf{3} \boldsymbol{x}^{\mathbf{2}}-\mathbf{2 7} \boldsymbol{x}+\mathbf{5 4}=\mathbf{0}$.
Write down the equation.
First check that equation is set equal to zero.
Next check to see if you can factor a GCF.
Finish factoring.
Apply Zero Product Principle. We can ignore the factor of 3- it does not equal 0 .
Apply additive inverse.

$$
3 x^{2}-27 x+54=0
$$

$3\left(x^{2}-9 x+18\right)=0$
$3(x-6)(x-3)=0$

$$
(x-6)=0 \quad(x-3)=0
$$

+6	+6	+3	+3
x	$=6$	x	$=3$
	$x=3,6$		

II. Practice solving quadratics by factoring.

1. $x^{2}+5 x+6=0$
2. $x^{2}-x-12=0$
3. $a^{2}-9 a+18=0$
4. $t^{2}+2 t-19=5$
5. $x^{2}+15 x+30=-6$
6. $2 x^{2}+6 x+4=0$
7. $d^{2}+10 d=-16$
8. $c^{2}-6 c+9=0$
9. $3 a^{2}-12 a=15$
10. $5 x^{2}-14 x+8=0$
11. $h^{2}-7=9$
12. $7 t^{2}-15 t+6=4$
13. $4 x^{2}-46=3$
14. $4 n^{2}+12 n+9=0$
15. $6 t^{2}-15 t-36=0$
16. $5 x^{2}-11 x-3=2 x+3$

III. Challenge Problems

20. $3 x^{3}+21 x^{2}+36 x=0$
21. $x^{4}-13 x^{2}+36=0$
22. Find the dimensions of the rectangle below.
$2 x$

$$
x+7
$$

21. $2 a^{3}-18 a^{2}+36 a=0$
23. $x^{4}+3 x^{2}-4=0$
25. Find the dimensions of the rectangle below.

$$
x+8
$$

IV. Answer Key

1. $x=-2,-3$
2. $x=-3,4$
3. $a=3,6$
4. $t=-6,4$
5. $x=-3,-12$
6. $d=-8,-2$
7. $x=-2,-1$
8. $a=5,-1$
9. $c=3$
10. $x=\frac{4}{5}, 2$
11. $h=-4,4$
12. $t=\frac{1}{7}, 2$
13. $d=-5$
14. $x=-\frac{7}{2}, \frac{7}{2}$
15. $a=-\frac{1}{11}, 3$
16. $n=-\frac{3}{2}$
17. $x=-\frac{2}{5}, 3$
18. $t=-\frac{3}{2}, 4$
19. $h=-\frac{4}{3},-2$
20. $x=-4,-3,0$
21. $x=0,3,6$
22. $x=-2,2,-3,3$
23. $x=-1,1$
24. 26 inches by 20 inches
25. 13 feet by 18 feet
