

I. Model Problems. II. Practice III. Challenge Problems IV. Answer Key

Web Resources

You Tube Factoring Quadratic Equations Different Methods for Solving Quadratic Equations Quadratic Equation Grapher

We Recommend Meta Calculator- A Free Graphing Calculator

© <u>www.MathWorksheetsGo.com</u> All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Free Graph Paper : <u>www.mathworksheetsgo.com/paper/</u>

Solving Quadratic Equations by Factoring

I. Model Problems

In the following examples you will solve quadratic equations by factoring.

<i>Example 1:</i> Solve: $x^2 - 3x - 20 = 8$. Write down the equation. Rearrange so the equation is equal to zero $(ax^2 + bx + c = 0)$.	$ \begin{array}{rcrr} x^2 - 3x - 20 &= 8 \\ -8 & -8 \end{array} $
Factor. Apply Zero Product Principle: if the product is zero, either one of the factors or both of the factors equal zero.	
Apply additive inverse.	(x+4) = 0 $(x-7) = 0$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The solutions are:	$ \begin{array}{rcl} x &= -4 & x &= 7 \\ x &= -4, 7 & & \\ \end{array} $
<i>Example 1:</i> Solve: $x^2 - 3x - 20 = 8$.	
Write down the equation.	$3x^2 + x - 6 = 0$
Factor. Apply Zero Product Principle: if the product is	(3x+3)(x-2) = 0
zero, either one of the factors or both of the	
factors equal zero.	
Apply additive inverse.	$(3x+3) = 0 \qquad (x-2) = 0$
	-3 -3 +2 +2
Apply multiplicative inverse.	$\frac{-3 -3 +2 +2}{3x/_3 =^{-3}/_3 x =2}$
The solutions are:	x = -1, 2
<i>Example 3</i> : Solve: $3x^2 - 27x + 54 = 0$.	
Write down the equation. $-27x + 34 = 0$.	$3x^2 - 27x + 54 = 0$
First check that equation is set equal to zero.	
Next check to see if you can factor a GCF.	$3(x^2 - 9x + 18) = 0$
Finish factoring.	3(x-6)(x-3) = 0
Apply Zero Product Principle. We can ignore the factor of 3- it does not equal 0.	
Apply additive inverse.	(x-6) = 0 $(x-3) = 0$
	+6 +6 +3 +3
	x = 6 $x = 3$
The solutions are:	x = 3, 6

Worksheets 60!

II. Practice solving quadratics by factoring.

1. $x^{2} + 5x + 6 = 0$ 3. $a^{2} - 9a + 18 = 0$ 5. $x^{2} + 15x + 30 = -6$ 7. $2x^{2} + 6x + 4 = 0$ 9. $c^{2} - 6c + 9 = 0$ 11. $h^{2} - 7 = 9$ 13. $d^{2} + 10d + 18 = -7$ 15. $11a^{2} - 32a + 17 = 20$ 17. $5x^{2} - 11x - 3 = 2x + 3$ 19. $12h^{2} + 40h + 32 = 0$

III. Challenge Problems

- $20.\ 3x^3 + 21x^2 + 36x = 0$
- 22. $x^4 13x^2 + 36 = 0$

2x

24. Find the dimensions of the rectangle below.

- $21.\ 2a^3 18a^2 + 36a = 0$
- 23. $x^4 + 3x^2 4 = 0$
- 25. Find the dimensions of the rectangle below.

$$x + 3$$
 234 ft²

IV. Answer Key

1.	x = -2 , -3
2.	x = -3,4
3.	<i>a</i> = 3,6
4.	t = -6,4
5.	x = -3, -12
6.	d = -8, -2
7.	x = -2, -1
8.	a = 5, -1
	<i>c</i> = 3
10.	$x = \frac{4}{5}, 2$
	h = -4,4
12.	$t = \frac{1}{7}, 2$
	d = -5
14.	$x = -\frac{7}{2}, \frac{7}{2}$
15.	$a = -\frac{1}{11}, 3$
16.	$n = -\frac{3}{2}$
17.	$n = -\frac{3}{2}$ $x = -\frac{2}{5}, 3$
	$t = -\frac{3}{2}, 4$
19.	$h = -\frac{4}{3}, -2$
20.	x = -4, -3, 0
	x = 0,3,6
	x = -2, 2, -3, 3
	x = -1,1
24.	26 inches by 20 inches
	13 feet by 18 feet

