FINAL Study Guide (LT 4.1-4.3) Complex Numbers, Quadratic Formula, Vertex Form

Pure Imaginary Numbers A square root of a number *n* is a number whose square is *n*. For nonnegative real numbers *a* and *b*, $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}, b \neq 0$.

- The **imaginary unit** *i* is defined to have the property that $i^2 = -1$ and $i = \sqrt{-1}$ Simplified square root expressions do not have an *i* in the denominator.

Example 1	Example 2
a. Simplify $\sqrt{-48}$.	a. Simplify $-3i \cdot 4i$.
$\sqrt{-48} = \sqrt{16 \cdot 3 \cdot (-1)}$	$-3\boldsymbol{i}\cdot 4\boldsymbol{i}=-12\boldsymbol{i}^2$
$= \sqrt{16} \cdot \sqrt{3} \cdot \sqrt{-1}$ $= 4i\sqrt{3}$	= -12(-1) = 12
$\mathbf{b. Simplify } \sqrt{-63}.$	b. Simplify $\sqrt{-3} \cdot \sqrt{-15}$. $\sqrt{-3} \cdot \sqrt{-15} = i \sqrt{3} \cdot i \sqrt{15}$

$$\sqrt{-63} = \sqrt{-1 \cdot 7 \cdot 9}$$

$$= \sqrt{-1} \cdot \sqrt{7} \cdot \sqrt{9}$$

$$= 3i\sqrt{7}$$

$$\sqrt{-3} \cdot \sqrt{-15} = i\sqrt{3} \cdot i\sqrt{15}$$

$$= i^2\sqrt{45}$$

$$= \sqrt{-1} \cdot \sqrt{9} \cdot \sqrt{5}$$

$$= -3\sqrt{5}$$

Example 3: Solve $x^2 + 5 = 0$.

 $x^2 + 5 = 0$ Original equation. $x^2 = -5$ Subtract 5 from each side. $x = \pm \sqrt{5}i$ Square Root Property.

Use your notes and the examples above to solve the exercises below. Simplify.

1.
$$\sqrt{-72}$$
 2. $\sqrt{\frac{-24}{3}}$

 3. $\sqrt{-84}$
 4. $\sqrt{-84} \cdot 2\sqrt{-4}$

 Solve each equation.
 6. $4x^2 + 24 = 0$

7.
$$-9x^2 = 9$$
 8. $7x^2 + 84 = 0$

FINAL Study Guide (LT 4.1-4.3) Complex Numbers, Quadratic Formula, Vertex Form

Operations with Complex Numbers

Complex Number	A complex number is any number that can be written in the form $a + bi$, where a and b are real numbers and i is the imaginary unit ($i^2 = -1$). a is called the real part, and b is called the imaginary part.
Addition and	Combine like terms.
Subtraction of	(a + bi) + (c + di) = (a + c) + (b + d)i
Complex Numbers	(a + bi) - (c + di) = (a - c) + (b - d)i
Multiplication of	Use the definition of i^2 and the <u>FOIL</u> method:
Complex Numbers	($a + bi$)($c + di$) = ($ac - bd$) + ($ad + bc$) i
Complex Conjugate	a + bi and $a - bi$ are complex conjugates . The product of complex conjugates is always a real number.

To divide by a complex number, first multiply the dividend and divisor by the **complex conjugate** of the divisor.

Example 1: Simplify $(6 + i) + (4 - 5i)$.	Example 2: Simplify $(8 + 3i) - (6 - 2i)$.
(6 + i) + (4 - 5i)	(8 + 3i) - (6 - 2i)
= (6 + 4) + (1 - 5)i	= (8 - 6) + [3 - (-2)]i
= 10 - 4i	= 2 + 5i
Example 3: Simplify $(2 - 5i) \cdot (-4 + 2i)$. $(2 - 5i) \cdot (-4 + 2i)$ = 2(-4) + 2(2i) + (-5i)(-4) + (-5i)(2i) $= -8 + 4i + 20i - 10i^2$ = -8 + 24i - 10(-1) = 2 + 24i	Example 4: Simplify $\frac{3-i}{2+3i}$. $\frac{3-i}{2+3i} = \frac{3-i}{2+3i} \cdot \frac{2-3i}{2-3i}$ $= \frac{69i2i+3i^2}{4-9i^2}$ $= \frac{3-11i}{13}$ $= \frac{3}{13} - \frac{11}{13}i$

Use your notes and the examples above to solve the exercises below.

Simplify.

1. $(-4+2i) + (6-3i)$	2. $(5-i) - (3-2i)$	3. $(6-3i) + (4-2i)$
4. $(-11 + 4i) - (1 - 5i)$	5. $(8+4i) + (8-4i)$	6. $(5+2i) - (-6-3i)$
7. $(2+i)(3-i)$	8. $(5-2i)(4-i)$	9. $(4-2i)(1-2i)$
10. $\frac{5}{3+i}$	11. $\frac{7-13i}{2i}$	12. $\frac{6-5i}{3i}$
13. ι^{11}	14. <i>t</i> ¹⁰	