\qquad
\qquad
\qquad

FINAL Study Guide (LT 4.1-4.3) Complex Numbers, Quadratic Formula, Vertex Form

Pure Imaginary Numbers A square root of a number n is a number whose square is n. For nonnegative real numbers a and $b, \sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$ and $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}, b \neq 0$.

- The imaginary unit i is defined to have the property that $\boldsymbol{i}^{2}=-1$ and $\boldsymbol{i}=\sqrt{-1}$
- Simplified square root expressions do not have an i in the denominator.

Example 1

a. Simplify $\sqrt{-48}$.

$$
\begin{aligned}
\sqrt{-48} & =\sqrt{16 \cdot 3 \cdot(-1)} \\
& =\sqrt{16} \cdot \sqrt{3} \cdot \sqrt{-1} \\
& =4 i \sqrt{3}
\end{aligned}
$$

Example 2

a. Simplify $\mathbf{- 3 i} \cdot \mathbf{4 i}$.

$$
\begin{aligned}
-3 \boldsymbol{i} \cdot 4 \boldsymbol{i} & =-12 \boldsymbol{i}^{2} \\
& =-12(-1) \\
& =12
\end{aligned}
$$

b. Simplify $\sqrt{-63}$.

$$
\begin{aligned}
\sqrt{-63} & =\sqrt{-1 \cdot 7 \cdot 9} \\
& =\sqrt{-1} \cdot \sqrt{7} \cdot \sqrt{9} \\
& =3 i \sqrt{7}
\end{aligned}
$$

b. Simplify $\sqrt{-3} \cdot \sqrt{-15}$.

$$
\begin{aligned}
\sqrt{-3} \cdot \sqrt{-15} & =i \sqrt{3} \cdot i \sqrt{15} \\
& =i^{2} \sqrt{45} \\
& =\sqrt{-1} \cdot \sqrt{9} \cdot \sqrt{5} \\
& =-3 \sqrt{5}
\end{aligned}
$$

Example 3: Solve $\boldsymbol{x}^{2}+5=0$.

$$
\begin{aligned}
x^{2}+5 & =0 & & \text { Original equation. } \\
x^{2} & =-5 & & \text { Subtract } 5 \text { from each side. } \\
x & = \pm \sqrt{5} \boldsymbol{i} & & \text { Square Root Property. }
\end{aligned}
$$

Use your notes and the examples above to solve the exercises below.
Simplify.

1. $\sqrt{-72}$
2. $\sqrt{\frac{-24}{3}}$
3. $\sqrt{-84}$
4. $\sqrt{-84} \cdot 2 \sqrt{-4}$

Solve each equation.
5. $5 x^{2}+45=0$
6. $4 x^{2}+24=0$
7. $-9 x^{2}=9$
8. $7 x^{2}+84=0$
\qquad
\qquad
\qquad

FINAL Study Guide (LT 4.1-4.3)
 Complex Numbers, Quadratic Formula, Vertex Form

Operations with Complex Numbers

Complex Number	A complex number is any number that can be written in the form $a+b \boldsymbol{i}$, where a and b are real numbers and \boldsymbol{i} is the imaginary unit $\left(\boldsymbol{i}^{2}=-1\right)$. a is called the real part, and b is called the imaginary part.
Addition and Subtraction of Complex Numbers	Combine like terms. $(a+b \boldsymbol{i})+(c+d \boldsymbol{i})=(a+c)+(b+d) \boldsymbol{i}$ $(a+b \boldsymbol{i})-(c+d \boldsymbol{i})=(a-c)+(b-d) \boldsymbol{i}$
Multiplication of Complex Numbers	Use the definition of \boldsymbol{i} and the FOIL method: $(a+b \boldsymbol{i})(c+d \boldsymbol{i})=(a c-b d)+(a d+b c) \boldsymbol{i}$
Complex Conjugate	$a+b \boldsymbol{i}$ and $a-b \boldsymbol{i}$ are complex conjugates. The product of complex conjugates is always a real number.

To divide by a complex number, first multiply the dividend and divisor by the complex conjugate of the divisor.

Example 1: Simplify $(6+i)+(4-5 i)$.

$$
\begin{aligned}
(6 & +\boldsymbol{i})+(4-5 i) \\
& =(6+4)+(1-5) \boldsymbol{i} \\
& =10-4 \boldsymbol{i}
\end{aligned}
$$

Example 3: Simplify $(2-5 i) \cdot(-4+2 i)$.

$$
\begin{aligned}
(2 & -5 i) \cdot(-4+2 i) \\
& =2(-4)+2(2 i)+(-5 i)(-4)+(-5 i)(2 i) \\
& =-8+4 i+20 i-10 i^{2} \\
& =-8+24 i-10(-1) \\
& =2+24 i
\end{aligned}
$$

Example 2: Simplify $(\mathbf{8}+\mathbf{3 i})-(6-2 i)$.

$$
\begin{aligned}
(8 & +3 i)-(6-2 i) \\
& =(8-6)+[3-(-2)] i \\
& =2+5 i
\end{aligned}
$$

Example 4: Simplify $\frac{3-i}{2+3 i}$.

$$
\begin{aligned}
\frac{3-i}{2+3 i} & =\frac{3-i}{2+3 i} \cdot \frac{2-3 i}{2-3 i} \\
& =\frac{6--9 i--2 i+3 i^{2}}{4-9 i^{2}} \\
& =\frac{3-11 i}{13} \\
& =\frac{3}{13}-\frac{11}{13} \boldsymbol{i}
\end{aligned}
$$

Use your notes and the examples above to solve the exercises below.
Simplify.

1. $(-4+2 i)+(6-3 i)$
2. $(5-i)-(3-2 i)$
3. $(6-3 i)+(4-2 i)$
4. $(-11+4 i)-(1-5 i)$
5. $(8+4 i)+(8-4 i)$
6. $(5+2 i)-(-6-3 i)$
7. $(2+i)(3-i)$
8. $(5-2 i)(4-i)$
9. $(4-2 i)(1-2 i)$
10. $\frac{5}{3+i}$
11. $\frac{7-13 i}{2 i}$
12. $\frac{6-5 i}{3 i}$
13. ι^{11}
14. ι^{10}
