\qquad
\qquad
\qquad

Final Study Guide (LT 4.1-4.3)
 The Quadratic Formula and the Discriminant

Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form $a x^{2}+b x+c=0$.

Quadratic Formula	The solutions of $a x^{2}+b x+c=0$, with $a \neq 0$, are given by $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Example: Solve $\boldsymbol{x}^{2}-\mathbf{5} \boldsymbol{x}=\mathbf{1 4}$ by using the Quadratic Formula.
Rewrite the equation as $x^{2}-5 x-14=0$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { Quadratic Formula } \\
& =\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-14)}}{2(1)} & & \text { Replace } a \text { with } 1, b \text { with }-5, \text { and } c \text { with }-14 . \\
& =\frac{5 \pm \sqrt{81}}{2} & & \text { Simplify. } \\
& =\frac{5 \pm 9}{2} & & \\
& =7 \text { or }-2 & &
\end{aligned}
$$

The solutions are -2 and 7 .

Exercises

Solve each equation by using the Quadratic Formula.

1. $x^{2}+2 x-35=0$
2. $x^{2}+10 x+24=0$
3. $x^{2}-11 x+24=0$
4. $4 x^{2}+19 x-5=0$
5. $14 x^{2}+9 x+1=0$
6. $2 x^{2}-x-15=0$
7. $3 x^{2}+5 x=2$
8. $2 y^{2}+y-15=0$
9. $3 x^{2}-16 x+16=0$
10. $8 x^{2}+6 x-9=0$
11. $r^{2}-\frac{3 r}{5}+\frac{2}{25}=0$
12. $x^{2}-10 x-50=0$
13. $x^{2}+6 x-23=0$
14. $4 x^{2}-12 x-63=0$
15. $x^{2}-6 x+21=0$
\qquad
\qquad
\qquad

Final Study Guide (LT 4.1-4.3)
 The Quadratic Formula and the Discriminant

Roots and the Discriminant

Discriminant	The expression under the radical sign, $b^{2}-4 a c$, in the Quadratic Formula is called the discriminant.

Discriminant	Type and Number of Roots;	Solutions
$b^{2}-4 a c>0$ and a perfect square	2 rational roots;	2 solutions
$b^{2}-4 a c>0$, but not a perfect square	2 irrational roots;	2 solutions
$b^{2}-4 a c=0$	1 rational root;	1 solution
$b^{2}-4 a c<0$	2 complex roots;	0 solutions

Example: Find the value of the discriminant for each equation. Describe and state the number of solutions for each equation.
a. $2 x^{2}+5 x+3$

The discriminant is $b^{2}-4 a c=5^{2}-4(2)(3)$ or 1 . The discriminant is a perfect square, so the equation has 2 solutions. They have no i's or square roots.
b. $3 x^{2}-2 x+5$

The discriminant is $b^{2}-4 a c=(-2)^{2}-4(3)(5)$ or -56 . The discriminant is negative, so the equation has 0 solutions.

Exercises

Complete parts a-c for each quadratic equation.
a. Find the value of the discriminant.
b. Describe and state the number of solutions.
c. Find the exact solutions by using the Quadratic Formula.

1. $p^{2}+12 p=-4$
2. $9 x^{2}-6 x+1=0$
3. $2 x^{2}-7 x-4=0$
4. $x^{2}+4 x-4=0$
5. $5 x^{2}-36 x+7=0$
6. $4 x^{2}-4 x+11=0$
7. $x^{2}-7 x+6=0$
8. $m^{2}-8 m=-14$
9. $25 x^{2}-40 x=-16$
10. $4 x^{2}+20 x+29=0$
11. $6 x^{2}+26 x+8=0$
12. $4 x^{2}-4 x-11=0$
