Final Study Guide (LT 4.1-4.3) The Quadratic Formula and the Discriminant

Quadratic Formula The Quadratic Formula can be used to solve *any* quadratic equation once it is written in the form $ax^2 + bx + c = 0.$

Quadratic Formula	The solutions of $ax^2 + bx + c = 0$, with $a \neq 0$, are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.
-------------------	--

Example: Solve $x^2 - 5x = 14$ by using the Quadratic Formula.

Rewrite the equation as $x^2 - 5x - 14 = 0$.

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	Quadratic Formula
$=\frac{-(-5)\pm\sqrt{(-5)^2-4(1)(-14)}}{2(1)}$	Replace a with 1, b with –5, and c with –14.
$=\frac{5\pm\sqrt{81}}{2}$	Simplify.
$=\frac{5\pm9}{2}$	
= 7 or -2	

The solutions are -2 and 7.

Exercises

Solve each equation by using the Quadratic Formula.

1. $x^2 + 2x - 35 = 0$ **2.** $x^2 + 10x + 24 = 0$ 3. $x^2 - 11x + 24 = 0$

- 4. $4x^2 + 19x 5 = 0$ 5. $14x^2 + 9x + 1 = 0$ 6. $2x^2 - x - 15 = 0$
- 8. $2y^2 + y 15 = 0$ 7. $3x^2 + 5x = 2$ 9. $3x^2 - 16x + 16 = 0$
- 11. $r^2 \frac{3r}{5} + \frac{2}{25} = 0$ **10.** $8x^2 + 6x - 9 = 0$ 12. $x^2 - 10x - 50 = 0$

13. $x^2 + 6x - 23 = 0$ **14.** $4x^2 - 12x - 63 = 0$ 15. $x^2 - 6x + 21 = 0$

Final Study Guide (LT 4.1-4.3) The Quadratic Formula and the Discriminant

Roots and the Discriminant

Discriminant	The expression under the radical sign, $b^2 - 4ac$, in the Quadratic Formula is called the discriminant .
--------------	---

Discriminant	Type and Number of Roots;	Solutions
$b^2 - 4ac > 0$ and a perfect square	2 rational roots;	2 solutions
$b^2 - 4ac > 0$, but not a perfect square	2 irrational roots;	2 solutions
$b^2 - 4ac = 0$	1 rational root;	1 solution
$b^2 - 4ac < 0$	2 complex roots;	0 solutions

Example: Find the value of the discriminant for each equation. Describe and state the number of solutions for each equation.

a. $2x^2 + 5x + 3$
The discriminant is $b^2 - 4ac = 5^2 - 4(2)$ (3) or 1. The
discriminant is a perfect square, so the equation has 2
solutions. They have no i's or square roots.

b. $3x^2 - 2x + 5$

The discriminant is $b^2 - 4ac = (-2)^2 - 4(3)$ (5) or -56. The discriminant is negative, so the equation has 0 solutions.

Exercises

Complete parts a-c for each quadratic equation.

a. Find the value of the discriminant.

- b. Describe and state the number of solutions.
- c. Find the exact solutions by using the Quadratic Formula.
- **2.** $9x^2 6x + 1 = 0$ 3. $2x^2 - 7x - 4 = 0$ **1.** $p^2 + 12p = -4$
- **4.** $x^2 + 4x 4 = 0$ 5. $5x^2 - 36x + 7 = 0$ 6. $4x^2 - 4x + 11 = 0$
- 7. $x^2 7x + 6 = 0$ 8. $m^2 - 8m = -14$ 9. $25x^2 - 40x = -16$

10. $4x^2 + 20x + 29 = 0$ 11. $6x^2 + 26x + 8 = 0$ 12. $4x^2 - 4x - 11 = 0$