\qquad
\qquad

LT 1.2 Study Guide and Intervention

Angles and Parallel Lines: Proofs

Parallel Lines and Angle Pairs When two parallel lines are cut by a transversal, the following pairs of angles are congruent.

- corresponding angles
- alternate interior angles
- alternate exterior angles

Also, consecutive interior angles are supplementary.

Example: In the figure, $m \angle 2=75$. Find the measures of the remaining angles.
$m \angle 1=105 \quad \angle 1$ and $\angle 2$ form a linear pair.
$m \angle 3=105 \quad \angle 3$ and $\angle 2$ form a linear pair.
$m \angle 4=75 \quad \angle 4$ and $\angle 2$ are vertical angles.
$m \angle 5=105 \quad \angle 5$ and $\angle 3$ are alternate interior angles.
$m \angle 6=75 \quad \angle 6$ and $\angle 2$ are corresponding angles.
$m \angle 7=105 \quad \angle 7$ and $\angle 3$ are corresponding angles.
$m \angle 8=75 \quad \angle 8$ and $\angle 6$ are vertical angles.

Exercises

In the figure, $m \angle 3=102$. Find the measure of each angle.
Tell which postulate(s) or theorem(s) you used. Use a two column-proof.

1. $\angle 5$
2. $\angle 6$

3. $\angle 11$
4. $\angle 7$
5. $\angle 15$
\qquad
\qquad
\qquad

LT 1.2 Study Guide and I ntervention

Angles and Parallel Lines: Proofs

In the figure, $m \angle 9=80$ and $m \angle 5=68$. Find the measure of each angle. Tell which postulate(s) or theorem(s) you used. Use a two column proof.
7. $\angle 12$
8. $\angle 1$

9. $\angle 4$
10. $\angle 3$
11. $\angle 7$
12. $\angle 16$
\qquad
\qquad
\qquad

LT 1.2 Study Guide and Intervention
 Angles and Parallel Lines

Algebra and Angle Measures Algebra can be used to find unknown values in angles formed by a transversal and parallel lines.

Example: If $m \angle 1=3 x+15, m \angle 2=4 x-5$, and $m \angle 3=5 y$, find the value of x and y.

$$
p \| q \text {, so } m \angle 1=m \angle 2
$$

because they are corresponding angles.

$$
\begin{aligned}
m \angle 1 & =m \angle 2 \\
3 x+15 & =4 x-5 \\
3 x+15-3 x & =4 x-5-3 x \\
15 & =x-5 \\
15+5 & =x-5+5 \\
20 & =x
\end{aligned}
$$

$r \| s$, so $m \angle 2=m \angle 3$ because they are corresponding angles.

$$
\begin{aligned}
m \angle 2 & =m \angle 3 \\
75 & =5 y \\
\frac{75}{5} & =\frac{5 y}{5} \\
15 & =y
\end{aligned}
$$

Exercises

Find the value of the variable(s) in each figure. Explain your reasoning (Justify)
1.

2.

LT 1.2 Angles and Parallel Lines
Example 1: Use Corresponding Angles Postulate
In the figure, $m \angle 8=121$. Find the measure of each angle. Tell which postulates (or theorems) you used. Use a two column proof.
a. $\quad \angle 3$

b. $\angle 1$

Real-World Example 2: Use Theorems about Parallel Lines
MAPS School Drive and Oak Street are parallel streets that intersect
Park Road along the west side of City Park.
If $m \angle 1=122$, find $m \angle 2$. Use a two column proof.

Example 3: Find Values of Variables
ALGEBRA Use the figure at the right to find the indicated variable. Explain your reasoning (Justify your answer)

If $m \angle 1=16 x-8, m \angle 2=4(y+8)$, and $m \angle 3=14 x+2$, find x and y.
a. If $m \angle 1=16 x-8, m \angle 2=4(y+8)$, and $m \angle 3=14 x+2$, find x.

b. If $m \angle 1=16 x-8, m \angle 2=4(y+8)$, and $m \angle 3=14 x+2$, find y

LT 1.2 Angles and Parallel Lines

1. Find the measure of $\angle 2$ if $\mathfrak{g \|} h, \overline{W Y}_{\|} \overline{X Z}$, and $m \angle 5=70$.

[60
E 110
[70
[65
2. Find the measure of $\angle 2$ if $m \angle 1=8 y-6$ and $m \angle 2=7 y$.

[56
[49

E 35
E 42
3. What is the value of y ?

E 24
E 30

E 26
[28
4. If line m and n are parallel and l is perpendicular to m, then \qquad .

[. l and n are skew lines.

E $\quad l$ is parallel to n.
[m is parallel to n.

E $\quad l$ is perpendicular to n.
5. In the picture, if $m \angle 2=8 x+8$ and $m \angle 6=4 x+28$, what is $m \angle 2$?

[76
[96
■ 90
E 104

