LT 3.1 Study Guide and Intervention
 Graphing Quadratic Functions using a Table

Graph Quadratic Functions

Quadratic Function In Standard Form	A function defined by an equation of the form $f(x)=a x^{2}+b x+c$, where $a \neq 0$

Example: Make a table of values that includes the vertex. Use this information to graph the function $f(x)=$ $x^{2}-3 x+5$. Label the vertex, the axis of symmetry, and the y-intercept. Use this information to graph the function.

\boldsymbol{x}	$\boldsymbol{x}^{2}-\mathbf{3 x + 5}$	$\boldsymbol{f}(x)$	$(x, f(x))$
0	$0^{2}-3(0)+5$	5	$(0,5)$
1	$1^{2}-3(1)+5$	3	$(1,3)$
3	$\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)+5$	$\frac{11}{4}$	$\left(\frac{3}{2}, \frac{11}{4}\right)$
2	$2^{2}-3(2)+5$	3	$(2,3)$
2	$3^{2}-3(3)+5$	5	$(3,5)$

Exercises

Complete parts a-c for each quadratic function.
a. Make a table of values that includes the vertex.
b. Use this information to graph the function.
c. Label y-intercept, the x-intercepts, the axis of symmetry, and the vertex.

1. $f(x)=x^{2}+6 x+8$
2. $f(x)=-x^{2}-2 x+2$
3. $f(x)=2 x^{2}-4 x+3$
Use x from -4 to -2
Use x from -2 to 0
Use x from 0 to 2
4. $f(x)=x^{2}+4 x-7$
5. $f(x)=3 x^{2}-6 x+7$

Use x from 1 to 3
Use x from 0 to 2

LT 3.2 Study Guide and Intervention
 Graphing Quadratic Functions using the equation of the Axis of Symmetry

Graph Quadratic Functions

Quadratic Function In Standard Form	A function defined by an equation of the form $f(x)=a x^{2}+b x+c$, where $a \neq 0$
Graph of a Quadratic Function	A parabola with these characteristics: y-intercept: c; axis of symmetry: $x=\frac{-b}{2 a} ;$ x-coordinate of vertex: $\frac{-b}{2 a}$

Example: Find the y-intercept, the equation of the axis of symmetry, and the $x \& y$-coordinate of the vertex for the graph of $f(x)=x^{2}-3 x+5$. Use this information to graph the function.
$a=1, b=-3$, and $c=5$, so the y-intercept is 5 . The equation of the axis of symmetry is $x=\frac{-(-3)}{2(1)}$ or $\frac{3}{2}$. The x-coordinate of the vertex is $\frac{3}{2}$.
Next make a table of values for x near $\frac{3}{2}$.

\boldsymbol{x}	$\boldsymbol{x}^{2}-\mathbf{3 x + 5}$	$\boldsymbol{f}(x)$	$(x, f(x))$
0	$0^{2}-3(0)+5$	5	$(0,5)$
1	$1^{2}-3(1)+5$	3	$(1,3)$
3	$\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)+5$	$\frac{11}{4}$	$\left(\frac{3}{2}, \frac{11}{4}\right)$
2	$2^{2}-3(2)+5$	3	$(2,3)$
2	$3^{2}-3(3)+5$	5	$(3,5)$

Exercises

Complete parts a-c for each quadratic function.
a. Find the y-intercept, the equation of the axis of symmetry, and the x \& y-coordinate of the vertex.
b. Use this information to graph the function.
c. Label the vertex, the axis of symmetry, and the y-intercept, including where it occurs (the value)
d. Label the x-intercepts.

1. $f(x)=100-2 x-x^{2}$
2. $f(x)=-x^{2}-4 x+10$
3. $f(x)=x^{2}-10 x+5$
4. $f(x)=20+6 x-x^{2}$
5. $f(x)=-6 x^{2}+12 x+21$
