Enrichment

right of the axis of symmetry.

Finding the x-intercepts of a Parabola

As you know, if $f(x) = ax^2 + bx + c$ is a quadratic function, the values of xthat make f(x) equal to zero are $\frac{-b + \sqrt{b^2 - 4ac}}{2a}$ and $\frac{-b - \sqrt{b^2 - 4ac}}{2a}$

The average of these two number values is $-\frac{b}{2a}$. The function f(x) has its maximum or minimum value when $x = -\frac{b}{2a}$. The *x*-intercepts of the parabola, when they exist, are $\frac{\sqrt{b^2-4ac}}{2a}$ units to the left and

Example / Find the vertex, axis of symmetry, and x-intercepts for $f(x) = 5x^2 + 10x - 7.$

Use
$$x = -\frac{b}{2a}$$
.

$$x = -\frac{10}{2(5)} = -1$$
 The *x*-coordinate of the vertex is -1 .

Substitute
$$x = -1$$
 in $f(x) = 5x^2 + 10x - 7$.

$$f(-1) = 5(-1)^2 + 10(-1) - 7 = -12$$
. The vertex is $(-1, -12)$.

The axis of symmetry is
$$x = -\frac{b}{2a}$$
, or $x = -1$.

The x-coordinates of the x-intercepts are
$$-1 \pm \frac{\sqrt{b^2 - 4ac}}{2a} = -1 \pm \frac{\sqrt{10^2 - 4 \cdot 5 \cdot (-7)}}{2 \cdot 5} = -1 \pm \frac{\sqrt{240}}{10}$$
. The x-intercepts are $\left(-1 - \frac{2}{5}\sqrt{15}, 0\right)$ and $\left(-1 + \frac{2}{5}\sqrt{15}, 0\right)$.

Exercises

Find the vertex, axis of symmetry, and x-intercepts for the graph of each function using $x = -\frac{b}{2a}$.

1.
$$f(x) = x^2 - 4x - 8$$
 (2, -12); $x = 2$;

2.
$$g(x) = -4x^2 - 8x + 3$$
 (-1, 7); $x = -1$; $-1 \pm 2\sqrt{7}$

3.
$$y = -x^2 + 8x + 3$$
 (4, 19); $x = 4$; $(-1)(x)^2$ 4 $\pm \sqrt{19}$

4.
$$f(x) = 2x^2 + 6x + 5$$
 $\left(-\frac{3}{2}, \frac{1}{2}\right)$; $x = -\frac{3}{2}$

5.
$$A(x) = x^2 + 12x + 36$$
 (-6, 0); $x = -6$;

1.
$$f(x) = x^{2} - 4x - 8$$
 (2, -12); $x = 2$; $2 \pm 2\sqrt{3}$
2. $g(x) = -4x^{2} - 8x + 3$ (-1, 7); $x = -1$; $-1 \pm 2\sqrt{7}$
3. $y = -x^{2} + 8x + 3$ (4, 19); $x = 4$; $4 \pm \sqrt{19}$
5. $A(x) = x^{2} + 12x + 36$ (-6, 0); $x = -6$; 6. $k(x) = -2x^{2} + 2x - 6$ ($\frac{1}{2}$, $-5\frac{1}{2}$); $x = \frac{1}{2}$; no x-intercepts no x-intercepts