Warm-Up

Graph the quadratic function using the equation of the axis of symmetry.
Label the vertex, axis of symmetry, y-intercept, x-intercept, including their location (hint: a \#).

$$
f(x)=x^{2}+4 x-5
$$

S KeyConcept Maximum and Minimum Value

Words
The graph of $f(x)=a x^{2}+b x+c$, where $a \neq 0$,

- opens up and has a minimum value when $a>0$, and
- opens down and has a maximum value when $a<0$.

Model
a is positive.

The y-coordinate is the minimum value.

The y-coordinate is the maximum value.

LT 3.3
 Graphing Quadratic Functions Maximum and Minimum

Learning Objective

I will be able to . . .

* Find and interpret the maximum and minimum values of a quadratic function.

Ex1:

a. Determine whether the functions has a maximum or minimum value.

$$
f(x)=-4 x^{2}+12 x+18
$$

$a=-4$, so the graph open down and the function has a maximum value
b. State the maximum or minimum value

$$
f(x)=-4 x^{2}+12 x+18
$$

The maximum value of the function is the y-coordinate of the vertex.

The x-coordinate of the vertex is

The y-coordinate of the vertex is

Ex2: $f(x)=4 x^{2}-24 x+11$.
A. Determine whether the function has a maximum or minimum value.
b. State the maximum or minimum value

$$
f(x)=4 x^{2}-24 x+11
$$

The maximum value of the function is the y-coordinate of the vertex.
The x-coordinate of the vertex is

The y-coordinate of the vertex is

Homework

* Use HW \#1 and 2 to complete the following:

1) Determine whether the function has a maximum or minimum value.
2) State the maximum or minimum value
