FOIL or Double Distribute

Solve: Use FOIL or DOUBLE DISTRIBUTION method a) (x-6)(x-2) =

b)
$$(x-2)(x-5) =$$

LT 3.4	LT 3.5
 Solve quadratic equations. f(x) = ax ^2 + bx +c BY 	 Solve quadratic equations. f(x) = ax ^2 + bx +c BY
Graphing (x-intercepts where y=0)	Factoring GCF

Essential Skill 3: Quadratic Functions

LT 3.5 Solving Quadratic Functions by Factoring

Learning Objective

I will be able to . . .

- * Identify and write the roots/zeros of a quadratic function.
- * Solve quadratic equations by factoring using
 * GCF
 - * Box or X method

Standard Form of Quadratic Function

> Related Graph 2 and 6 are *x*-intercepts.

Standard Form

$$0 = x^2 - 8x + 12$$

Solve by graphing!

Pg. 8

LT 3.5 New Glossary: Factored Form

GRoWTh	Factored Form	
<u>G</u> raph		
<u>R</u> ule		
0		
<u>W</u> ords	 Solving quadratic functions by factoring is an application of the zero product property. EX: (x + 3)(x + 5) = 0 	
<u>T</u> able		
h		

Factored form

Factored form of a quadratic equation

$$0 = a(x - p)(x - q)$$

p & q Represent the x-intercepts of the graph of the equation

Remember: the x-intercepts are the zeros

Solve for the roots/zeros of the equation a) (x-3)(x-6) = 0

b) (x-2)(x+1) = 0

c)
$$(x+5)(x+1) = 0$$

Write a quadratic equation in factored form and standard form with 4 and -5 as its roots.

First: What are the roots of a quadratic?

Second: What does factored form look like?

Third: What does standard form look like?

Translate sentences into Equations Write a quadratic equation, in factored form and in standard form with – 1/3 and 6 as its roots.

First: What are the roots of a quadratic?

Second: What does factored form look like?

Third: What does standard form look like?

What do they have in common!

$$16x^2 + 8x = 0.$$

$$4y^2 + 16y = 0$$

$$6a^5 + 18a^4 = 0$$

Solve by factoring $x^2 + 16x + 64 = 0$

$$x^2 + 9x + 20 = 0$$

$$x^2 - 11x + 30 = 0$$

$$x^2 - 4x - 21 = 0$$

Solve by factoring $6x^2 + 18x + 12 = 0$

Solve by factoring $3x^2 - 6x - 24 = 0$

Warm-up

HW Check

LT 3.5	LT 3.6
Solving by factoring	Solving by factoring
 Solve quadratic equations. f(x) = ax ^2 + bx +c BY 	 Solve quadratic equations. f(x) = ax ^2 + bx +c BY
Factoring GCF	Factoring using
Box Method or X Method	Difference of squares
Both	Perfect squares

Difference of squares $(a+b)(a-b) = a^2 - b^2$

Example 1: Solve. $x^2 - 64 = 0$

$$x^2 - 16 = 0$$

Solve by factoring. $81x^2 - 9 = 0$

Solve by factoring. $3x^2 - 12 = 0$

Perfect Square

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

Solve each equation by factoring.

$$x^2 + 16x + 64 = 0$$

Solve each equation by factoring.

 $x^2 + 12x + 36 = 0$

Solve the following by factoring $x^2 - 6xy + 9y^2 = 0$