FOIL or Double Distribute

5 KeyConcept FOIL Method for Multiplying Binomials

Solve: Use FOIL or DOUBLE DISTRIBUTION method
a) $(x-6)(x-2)=$
b) $(x-2)(x-5)=$
\(\left.\begin{array}{|c|c|}\hline LT 3.4 \& LT 3.5

\hline 1. Solve quadratic equations.

f(x)=a x^{\wedge} 2+b x+c \& 1. Solve quadratic equations.

BY \& f(x)=a \wedge^{\wedge} 2+b x+c

BY\end{array}\right]\)| Factoring |
| :---: |
| GCF |

Essential Skill 3: Quadratic Functions

LT 3.5 Solving Quadratic Functions by Factoring

Learning Objective

I will be able to . . .

* Identify and write the roots/zeros of a quadratic function.
* Solve quadratic equations by factoring using
* GCF
* Box or X method

Standard Form of Quadratic Function

$$
f(x)=a x^{2}+b x+c, \text { where } a \neq 0
$$

quadratic term
linear term
constant term

Example 1

Standard Form

$$
0=x^{2}-8 x+12
$$

Solve by graphing!

Factored Form
$0=(x-6)(x-2)$
Factors

Related Graph
2 and 6 are
x-intercepts.

为	Batersem
Eis	
\%orw	
ITob	

Factored form

Factored form of a quadratic equation

$$
0=a(x-p)(x-q)
$$

p \& q Represent the x-intercepts of the graph of the equation

Remember: the x -intercepts are the zeros

Example 2

Solve for the roots/zeros of the equation
a) $(x-3)(x-6)=0$
b) $(x-2)(x+1)=0$
c) $(x+5)(x+1)=0$

Example 3

Write a quadratic equation in factored form and standard form with 4 and -5 as its roots.
First: What are the roots of a quadratic?

Second: What does factored form look like?

Third: What does standard form look like?

Example 4

Translate sentences into Equations

Write a quadratic equation, in factored form and in standard form with $-1 / 3$ and 6 as its roots.
First: What are the roots of a quadratic?

Second: What does factored form look like?

Third: What does standard form look like?

Example 5

Solve by factoring

$$
16 x^{2}+8 x=0
$$

Example 6

Solve by factoring

$$
4 y^{2}+16 y=0
$$

Example 7

Solve by factoring

$$
6 a^{5}+18 a^{4}=0
$$

Example 8

Solve by factoring

$$
x^{2}+16 x+64=0
$$

Example 9

Solve by factoring

$$
x^{2}+9 x+20=0
$$

Example 10

Solve by factoring

$$
x^{2}-11 x+30=0
$$

Example 11

Solve by factoring

$$
x^{2}-4 x-21=0
$$

Example 12

Solve by factoring

$$
6 x^{2}+18 x+12=0
$$

Example 13

Solve by factoring

$$
3 x^{2}-6 x-24=0
$$

Warm-up

HW Check

LT 3.5	LT 3.6 Solving by factoring			
Solving by factoring		\left\lvert\,	1. Solve quadratic equations.	
:---:	:---:			
$f(x)=a x^{\wedge} 2+b x+c$	1. Solve quadratic equations.			
BY	$f(x)=a x^{\wedge} 2+b x+c$			
$B Y$		\quad	Factoring using	
:---:				
Factoring GCF				
Box Method or X Method				
Both	\quad	Difference of squares		
:---:				
Perfect squares	\right.			

Difference of squares

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

Example 1:
Solve. $x^{2}-64=0$

Example 2

Solve by factoring.

$$
x^{2}-16=0
$$

Example 3

Solve by factoring. $81 x^{2}-9=0$

Example 4

Solve by factoring.

$$
3 x^{2}-12=0
$$

$$
\begin{gathered}
\text { Perfect Square } \\
\begin{array}{c}
a^{2}+2 a b+b^{2}=(a+b)^{2} \\
a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{array}
\end{gathered}
$$

Example 1
Solve each equation by factoring.

$$
x^{2}+16 x+64=0
$$

Example 2

Solve each equation by factoring.

$$
x^{2}+12 x+36=0
$$

Example 3

Solve the following by factoring

$$
x^{2}-6 x y+9 y^{2}=0
$$

