LT 4.1 Enrichment #1 **Conjugates and Absolute Value**

When studying complex numbers, it is often convenient to represent a complex number by a single variable. For example, we might let z = x + yi. We denote the conjugate of z by \overline{z} . Thus, $\overline{z} = x - yi$.

We can define the absolute value of a complex number as follows.

 $|z| = |x + yi| = \sqrt{x^2 + y^2}$

There are many important relationships involving conjugates and absolute values of complex numbers.

Example 1: Show $|z|^2 = z\overline{z}$ for any complex number *z*.

Let z = x + yi. Then, $z\overline{z} = (x + y\mathbf{i})(x - y\mathbf{i})$ $= x^2 + v^2$ $=\sqrt{(x^2 + y^2)^2}$ $= |z|^2$

Example 2: Show $\frac{\bar{z}}{|z|^2}$ is the multiplicative inverse for any nonzero complex number z.

We know $|z|^2 = z\overline{z}$. If $z \neq 0$, then we have $z\left(\frac{\overline{z}}{|z|^2}\right) = 1$. Thus, $\frac{\bar{z}}{|z|^2}$ is the multiplicative inverse of z.

Exercises

For each of the following complex numbers, find the multiplicative inverse and prove it.

1. 2 <i>i</i>	2. $-4 - 3i$	3. 12 – 5 <i>i</i>
4. 5 – 12 <i>i</i>	5. 1 + <i>i</i>	6. $\sqrt{3} - i$
7. $\frac{\sqrt{3}}{3} + \frac{\sqrt{3}}{3}i$	8. $\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$	9. $\frac{1}{2} - \frac{\sqrt{3}}{2}i$