\qquad
\qquad
\qquad

LT 4.1 Enrichment \#1
 Conjugates and Absolute Value

When studying complex numbers, it is often convenient to represent a complex number by a single variable. For example, we might let $z=x+y i$. We denote the conjugate of z by \bar{z}. Thus, $\bar{z}=x-y i$.

We can define the absolute value of a complex number as follows.

$$
|z|=|x+y i|=\sqrt{x^{2}+y^{2}}
$$

There are many important relationships involving conjugates and absolute values of complex numbers.
Example 1: Show $|z|^{2}=z \bar{z}$ for any complex number z.
Let $z=x+y i$. Then,

$$
\begin{aligned}
z \bar{Z} & =(x+y i)(x-y i) \\
& =x^{2}+y^{2} \\
& =\sqrt{\left(x^{2}+y^{2}\right)^{2}} \\
& =|z|^{2}
\end{aligned}
$$

Example 2: Show $\frac{\bar{z}}{|z|^{2}}$ is the multiplicative inverse for any nonzero complex number z.
We know $|z|^{2}=z \bar{z}$. If $z \neq 0$, then we have $z\left(\frac{\bar{z}}{|z|^{2}}\right)=1$.
Thus, $\frac{\bar{z}}{|z|^{2}}$ is the multiplicative inverse of z.

Exercises

For each of the following complex numbers, find the multiplicative inverse and prove it.

1. $2 i$
2. $-4-3 i$
3. $12-5 i$
4. $5-12 i$
5. $1+i$
6. $\sqrt{3}-i$
7. $\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{3} \boldsymbol{i}$
8. $\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \boldsymbol{i}$
9. $\frac{1}{2}-\frac{\sqrt{3}}{2} \boldsymbol{i}$
