\qquad
\qquad
\qquad

LT 4.1 Honors Skills Practice \#2 Complex Numbers

Solve each equation.

1. $5 n^{2}+35=0$
2. $2 m^{2}+10=0$
3. $4 m^{2}+76=0$
4. $-2 m^{2}-6=0$
5. $-5 m^{2}-65=0$
6. $\frac{3}{4} x^{2}+12=0$

Find the values of $\boldsymbol{\ell}$ and \boldsymbol{m} that make each equation true.
7. $15-28 \boldsymbol{i}=3 \ell+(4 m) \boldsymbol{I}$
8. $(6-\ell)+(3 m) \boldsymbol{i}=-12+27 \boldsymbol{i}$
9. $(3 \ell+4)+(3-m) \boldsymbol{i}=16-3 \boldsymbol{i}$
10. $(7+m)+(4 \ell-10) \boldsymbol{i}=3-6 \boldsymbol{i}$
11. ELECTRICITY The impedance in one part of a series circuit is $1+3 j$ ohms and the impedance in another part of the circuit is $7-5 j$ ohms. Add these complex numbers to find the total impedance in the circuit.
13. ELECTRICITY Using the formula $E=I Z$, find the voltage E in a circuit when the current I is $3-j$ amps and the impedance Z is $3+2 j$ ohms.

