LT 4.1 Study Guide and Intervention **Complex Numbers**

Pure Imaginary Numbers A square root of a number *n* is a number whose square is *n*. For nonnegative real numbers *a* and *b*, $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}, b \neq 0$.

- The **imaginary unit** i is defined to have the property that $i^2 = -1$. •
- Simplified square root expressions do not have radicals in the denominator, and any number remaining under the • square root has no perfect square factor other than 1.

Example 1	Example 2
a. Simplify $\sqrt{-48}$.	a. Simplify $-3i \cdot 4i$.
$\sqrt{-48} = \sqrt{16 \cdot (-3)}$	$-3\boldsymbol{i}\cdot 4\boldsymbol{i} = -12\boldsymbol{i}^2$
$=\sqrt{16}\cdot\sqrt{3}\cdot\sqrt{-1}$	= -12(-1)
$= 4i\sqrt{3}$	= 12
b. Simplify $\sqrt{-63}$	b. Simplify $\sqrt{-3} \cdot \sqrt{-15}$.
$\sqrt{-63} = \sqrt{-1 + 7 + 9}$	$\sqrt{-3} \cdot \sqrt{-15} = i \sqrt{3} \cdot i \sqrt{15}$
$\sqrt{-03} = \sqrt{-1} \cdot \sqrt{7} \cdot \sqrt{0}$	$= i^2 \sqrt{45}$
$= \sqrt{-1} \cdot \sqrt{7} \cdot \sqrt{9}$	$=\sqrt{-1}\cdot\sqrt{9}\cdot\sqrt{5}$
$= 3i\sqrt{7}$	$=-3\sqrt{5}$

Example 3: Solve $x^2 + 5 = 0$.

$x^2 + 5 = 0$	Original equation.
$x^2 = -5$	Subtract 5 from each side
$x = \pm \sqrt{5}i$	Square Root Property.

Exercises

Simplify.

- 1. $\sqrt{-72}$ 2. $\sqrt{-24}$
- $3.\sqrt{-84}$ **4.** (2 + i) (2 - i)

Solve each equation.

5. $5x^2 + 45 = 0$ 6. $4x^2 + 24 = 0$

7. $-9x^2 = 9$ 8. $7x^2 + 84 = 0$

LT 4.1 Study Guide and Intervention (continued) **Complex Numbers**

Operations with Complex Numbers

Complex Number	A complex number is any number that can be written in the form $a + bi$, where a and b are real numbers and i is the imaginary unit ($i^2 = -1$). a is called the real part, and b is called the imaginary part.
Addition and	Combine like terms.
Subtraction of	(a + bi) + (c + di) = (a + c) + (b + d)i
Complex Numbers	(a + bi) - (c + di) = (a - c) + (b - d)i
Multiplication of	Use the definition of i^2 and the FOIL method:
Complex Numbers	($a + bi$)($c + di$) = ($ac - bd$) + ($ad + bc$) i
Complex Conjugate	a + bi and $a - bi$ are complex conjugates. The product of complex conjugates is always a real number.

To divide by a complex number, first multiply the dividend and divisor by the **complex conjugate** of the divisor.

Example 1: Simplify $(6 + i)$ +	-(4-5i).	Example 2: Simplify $(8 + 3i) - (6 - 2i)$.
(6+i) + (4-5i)		(8+3i) - (6-2i)
=(6+4)+(1-5)i		=(8-6)+[3-(-2)]i
= 10 - 4i		= 2 + 5i
Example 3: Simplify $(2-5i)$	\cdot (-4 + 2 <i>i</i>).	Example 4: Simplify $\frac{3-i}{2+3i}$.
$(2-5i) \cdot (-4+2i)$		$\frac{3-i}{3-i} = \frac{3-i}{3-i} \cdot \frac{2-3i}{3-i}$
= 2(-4) + 2(2i) + (-5i)(-4) +	-(-5i)(2i)	2+3i $2+3i$ $2-3i69i2i+3i^2$
$= -8 + 4i + 20i - 10i^2$		$=\frac{4-9i^2}{4-9i^2}$
= -8 + 24i - 10(-1)		$=\frac{3-11i}{12}$
= 2 + 24i		$=\frac{3}{13}^{13}-\frac{11}{13}i$
Exercises		
Simplify.		
1. $(-4 + 2i) + (6 - 3i)$	2. $(5-i) - (3-2i)$	3. $(6-3i) + (4-2i)$
4. $(-11 + 4i) - (1 - 5i)$	5. $(8+4i) + (8-4i)$	6. $(5+2i) - (-6-3i)$
7. $(2+i)(3-i)$	8. $(5-2i)(4-i)$	9. $(4-2i)(1-2i)$
10. $\frac{5}{3+i}$	11. $\frac{7-13i}{2i}$	12. $\frac{6-5i}{3i}$