\qquad
\qquad
\qquad

LT 3.1-3.4 Study Guide and Intervention Solving Quadratic Equations by Graphing

Solve Quadratic Equations

Quadratic Equation	A quadratic equation has the form $a x^{2}+b x+c=0$, where $a \neq 0$.
Roots of a Quadratic Equation	solution(s) of the equation, or the zero(s) of the related quadratic function

The zeros of a quadratic function are the x-intercepts of its graph. Therefore, finding the x-intercepts is one way of solving the related quadratic equation.

Example: Graph \& Solve $x^{2}+2 x-3=0$ by graphing.
The x-coordinate of the vertex is $x=-\frac{b}{2 a}=-\frac{2}{2(1)}=-1$
Make a table of values using x-values around -1 .

\boldsymbol{x}	-3	-2	-1	0	1
$\boldsymbol{f}(\boldsymbol{x})$	0	-3	-4	-3	0

Label the vertex, axis of symmetry, y-intercept, x-intercept and their locations. Maximum or minimum?
From the table and the graph, we can see that the zeros of the function are -3 and 1 . (Solutions: $x=-3 \& x=1$)

Graph the quadratic function. Label the vertex, axis of symmetry, y-intercept, x-intercept and their locations. Maximum or minimum? Find the solutions (zeros) of the function.

$$
\text { 1. } x^{2}+2 x-8=0
$$

2. $x^{2}-4 x-5=0$

4. $x^{2}-10 x+21=0$

5. $x^{2}+4 x+6=0$

6. $-x^{2}-6 x-9=0$

\qquad
\qquad
\qquad

LT 3.5-3.6 Study Guide for Midterm Solving Quadratic Equations by Factoring

Factored Form To write a quadratic equation with roots p and q, let $(x-p)(x-q)=0$. Then multiply using FOIL.
Example: Write a quadratic equation in standard form with the given roots.
a. 3, -5
$x=3, x=-5$
$(x-p)(x-q)=0 \quad$ Write the pattern.
$(x-3)[x-(-5)]=0 \quad$ Replace p with $3, q$ with -5.
$(x-3)(x+5)=0 \quad$ Simplify.
$x^{2}+2 x-15=0 \quad$ Use FOIL.

The equation $x^{2}+2 x-15=0$ has roots 3 and -5 .

$$
\begin{gathered}
\text { b. }-\frac{7}{8}, \frac{1}{3} \\
x=-\frac{7}{8}, x=\frac{1}{3} \\
(x-p)(x-q)=0 \\
{\left[x-\left(-\frac{7}{8}\right)\right]\left(x-\frac{1}{3}\right)=0} \\
\left(x+\frac{7}{8}\right)\left(x-\frac{1}{3}\right)=0 \\
x^{2}-\frac{1}{3} x+\frac{7}{8} x-\left(\frac{7}{8}\right)\left(\frac{1}{3}\right)=0 \\
x^{2}-\frac{3}{24} x+\frac{21}{24} x-\left(\frac{7}{24}\right)=0 \\
x^{2}+\frac{18}{24} x-\frac{7}{24}=0
\end{gathered}
$$

The equation $24 x^{2}+13 x-7=0$ has roots $-\frac{7}{8}$ and $\frac{1}{3}$.
Write a quadratic equation in factored and standard form given the following root(s).

1. $3,-4$
2. $-8,-2$
3. 1,9
4. -5
5. 10,7
6. $-2,15$
7. $-\frac{1}{3}, 5$
8. $2, \frac{2}{3}$
9. $-7, \frac{3}{4}$
\qquad
\qquad
\qquad

LT 3.5-3.6 Study Guide for Midterm Solving Quadratic Equations by Factoring

Solve Equations by Factoring When you use factoring to solve a quadratic equation, you use the following property.

Zero Product Property	For any real numbers a and b, if $a b=0$, then either $a=0$ or $b=0$, or both a and $b=0$.

Example: Solve each equation by factoring.

a. $3 x^{2}=15 x$	2 terms (both with x's)
$3 x^{2}-15 x=0$	Subtract $15 x$ from both sides.
$3(\mathrm{x})(\mathrm{x})-3(5) x=0$	Find GCF
$3 x(x-5)=0$	Factor (take out) GCF
$3 x=0$ or $x-5=0$	Zero Product Property
$x=0$ or $\quad x=5$	Solve each equation.

The solution: $x=0$ and $x=5$

$$
\begin{array}{cl}
\text { b. } 4 x^{2}-\mathbf{5 x}=\mathbf{2 1} & \\
\qquad \begin{aligned}
4 x^{2}-5 x=21 & \\
4 x^{2}-5 x-21=0 & \text { Original equation } \\
(4 x+7)(x-3)=0 & \text { Subtract } 21 \text { from both } \\
4 x+7=0 \quad \text { or } x-3=0 & \text { Zero Product Property } \\
x=-\frac{7}{4} \text { or } & x=3
\end{aligned} & \text { Solve each equation. }
\end{array}
$$

The solution: $x=-\frac{7}{4}$ and $x=3$

Solve each equation by factoring.

1. $6 x^{2}-2 x=0$
2. $x^{2}=7 x$
3. $20 x^{2}=-25 x$
4. $x^{2}+x-30=0$
5. $x^{2}+14 x+33=0$
6. $2 x^{2}-250 x+5000=0$
7. $2 x^{2}-x-3=0$
8. $4 x^{2}+27 x-7=0$
9. $3 x^{2}+29 x-10=0$
10. $6 x^{2}-5 x-4=0$
11. $12 x^{2}-8 x+1=0$
12. $5 x^{2}+28 x-12=0$
